Chemical Engineering Thermodynamics Quiz 14 April 20, 2017

The Sabatier reaction (eqn. 17.31) is used to produce methane from hydrogen for introduction into existing natural gas distribution systems. For example excess solar or wind power could be used to perform electrolysis of water and the H₂ converted to methane by this reaction. It might be possible to couple the water gas shift reaction (eqn. 17.32) to enhance conversion of H₂ to CH₄ since the water-gas shift reaction both consumes the byproduct of the Sabatier reaction and produces the two reactants. Calculate the conversion of CO₂ in the absence of the water-gas shift reaction and in its presence at 625°K and 2 bar.

$$\operatorname{CO}_{2(g)} + 4\operatorname{H}_{2(g)} \stackrel{\rightarrow}{\leftarrow} \operatorname{CH}_{4(g)} + 2\operatorname{H}_2\operatorname{O}_{(g)}$$
 Sabatier 17.31

$$CO_{(g)} + H_2O_{(g)} \xrightarrow{\rightarrow} CO_{2(g)} + H_{2(g)}$$
 Water-gas shift 17.32

	∆H _f (298°K)	∆G _f (298°K)	ν ₁	ν ₂
	kJ/mol	kJ/mol		
CO	-111	-137	0	-1
H ₂ O	-242	-229	2	-1
CO ₂	-394	-394	-1	1
H_2	0	0	-4	1
CH₄	-74.9	-50.5	1	0

- a) Use Kcal.xls to calculate K_a for the two reactions at 625°K. (*Copy the heat capacity values from the PREOS.xls "ig CPs" sheet, CO is carbon monoxide, CH₄ is methane.)*
- b) Make a table for the Sabatier reaction run alone based on the stoichiometry to calculate the mole fractions. Use 1 mole CO₂, 4 moles of H₂ as feed.
- c) Write an expression for the equilibrium constants based on the mole fractions and pressure (2 bar) for the Sabatier alone.
- d) Use Excel to write a spreadsheet and use solver to find the conversion of the Sabatier reaction alone (reaction coordinate for reaction 1). Make sure to include limits on the reaction coordinate (you have one mole of CO₂ initially and no moles of CH₄ initially).
- e) Make a table for the two reactions run together **adding 2 moles of CO per mole of CO₂** that is added (do not add water).
- f) Write an expression for the two equilibrium constants based on the mole fractions and pressure (2 bar) for the Sabatier in combination with the water-gas shift reaction.
- g) Use Excel to write a spreadsheet to solve for the conversions of the two reactions. Make sure to include limits on the two reaction coordinates (you have the possibility of three moles of CO₂ if rxn 2 goes to completion and no moles of CH₄ initially; you have two moles of CO initially and one mole of CO₂).
- h) Make an assessment of using the water-gas shift reaction to enhance the Sabatier reaction conversion. Calculate moles CH₄ produced to moles CO₂ added as a measure of the efficiency.

$$A_{kruppl}(Q_{u}) \geq 14$$

$$A_{fu}(1 \geq 0, 201) =$$

$$a) \quad k_{a_{1}} = 25,900$$

$$k_{a_{2}} = 16.5$$

$$b) \qquad \frac{1}{1 \quad CC_{L}} \quad \frac{n_{f}}{1 \quad 1-5, \quad (1-5)/(5+5)/1}}{\frac{2}{1 \quad 1/2} \quad 4 \quad 4(1-\xi_{1}) \quad 4(1-\xi_{1})/(5+5)/1}{\frac{3}{2} \quad C(4_{4} \quad 0 \quad \xi_{1}, \quad 1/2)/(5+5)/1}}$$

$$\frac{1}{4 \quad 1/2} \quad \frac{1}{4 \quad 4(1-\xi_{1})} \quad \frac{1}{4 \quad (1-\xi_{1})} \quad \frac{1}{4 \quad (1$$

 \mathcal{D}

e)

$$f) \qquad K_{q_1} = \frac{s_1 (25_1 - \xi)^2 (7 - 25_1)^2}{(1 - 5_1 + \xi_2) (9 - (1 - 5_1 + \xi_2)^4 p^2)^2}$$

$$K_{a_{2}} = \frac{(4(1-s_{1})+s_{2})(1-s_{1}+s_{2})}{(2-s_{2})(2s_{1}-s_{2})}$$

$$g) \qquad 0 \leq s_{1} \leq 3 \qquad s_{1} = 1.53$$

$$-1 \leq s_{2} \leq 2 \qquad s_{2} = 2$$

$$R_{XU} \leq r_{UUI} = k_{0}$$

$$comp = k_{1} cm$$

h) For the Sabatier alcul

$$\frac{N_{c04}}{N_{c02}} = \frac{S_1}{1} = 0.916$$
adden

2

For the dual reaction scheme

$$\frac{N_{CH_q}}{N_{COL}} = \frac{f_i}{1} = 1.53$$

On the le hond Nelly nedured = 1.53 = 0.51 Nelly Ander addet

The effective user depends on how you define the problem

3